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It is shown that the Giirses-Nutku equations have a finite prolongation algebra 
for any value of the parameter K. The Painlev6 property of these equations is 
also examined. 

A generalization of the KdV equation found by Gfirses and Nutku 
(1981) is given by 

u, +6uux + Ux~x- hxuxx=O (la) 

At + 2uhx + 2Kux = 0 (lb) 

where K is an arbitrary constant. These equations arise as the embedding 
equations of a two-dimensional surface into a flat, three-dimensional space. 
Giirses and Nutku discussed the equivalence between the two-dimensional 
integrable systems and surface theory at the metric level. In a recent work, 
Chowdhury and Paul (1985) studied the prolongation structure of equations 
(1) without being aware of Giirses and Nutku (1981). They showed that 
the prolongation algebra closes for K -- -1, 1, 2. In this work we restudy 
the prolongation algebra of Giirses-Nutku equations and show that it closes 
for any value of K. We also show that a nontrivial Biicklund transformation 
cannot be found by prolongation techniques of Wahlquist and Estabrook 
(1975). We reduced the partial differential equations (1) to ordinary differen- 
tial equations by transformation of variables and applied the Painlev6 test 
of Ablowitz et al. (1980). We also applied the Painlev6 test for partial 
differential equations introduced by Weiss et al. (1983) to the Gfirses-Nutku 
equations. In both cases these equations fail when K r 0. Therefore they 
are not of P-type in their present form. 
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Introducing the notation 

ux = p, Px = q 

we can write equations (1) as 

ut + 6up + qx - Axq = 0  

At + 2uAx + 2Kp = 0 

(2) 

(3a) 

(3b) 

These first-order partial differential equations can be associated with the 
set of  four 2-forms, 

a l = du ^ dt - p  dx ^ dt 

a2 = dp A dt - q dx ^ dt 
(4) 

a3 = dq A dt +6up  dx A d t - q  dA ^ d t - d u  ^ dx 

c~4= -dA A dx + 2u dA ^ dt + 2Kp dx ^ dt 

The set {al, a2, c~3, a4} constitutes a closed ideal. That is, 

4 

daa = ~ fabceb, a, b = 1 , . . . , 4  (5) 
b=l  

where f~b are some 1,forms. We now seek a set of  1-forms 

W k = d y k + F k d x + G k d t ,  k = l , . . . , n  (6) 

with Fk(U,p, q, A, yk) and Gk(u,p,  q, A, yk) having the property that the 
prolonged ideal {eel, ce2, a3, a4, wl, . . . ,  wn} is closed, that is, 

4 ~ i 
dw k= ~ gkaaa+ ,.., n k A w  i (7) 

a = l  i=1 

i where n is the number  of  prolongation variables, and gka and 71 k are some 
sets of  0-forms and 1-forms, respectively. This requirement gives the set of  
partial differential equations for F k and Gk: 

F,p = F,q = 0, F,u + G,q = 0 

G,a +2uF,  A - qF'u = 0 (8) 

pG, u+qG,p+6upF,  u+2KpF,  x +IF ,  G] = 0  

where 

_ a_FF G' age F' [F, G]-Oy - O y  

The solutions of  equations (8) are 

F = Ufloe -~ + To eA 

G = -q f lo  e-A +pSo - 2 u ( u f l o  e-x + Toe ~) + ~o 
(9) 
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where/3o, 7o, ~0, and ~:o are independent of  u, p, q, and A and satisfy the 
commutator  relations 

[ ~o,/30] = ~o 

[6o, Yo] = 2yo(K - 1) (10) 

[30,/3o] =2/3o(1 - K )  

[~o, 3'0] = [~o,/30] = [Go, ~o] = 0 

The above algebra is finite-dimensional and no "closing off" is needed. 
With the choice ~o = 0, which does not alter our conclusion, equations (9) 
and (10) reduce to the results given by Chowdhury and Paul (1985) for the 
special values K = -1 ,  1, 2, provided F and G in (9) are expressed in terms 
of 

p = Ke ~/K (11) 

Choosing 3'o = (1 - K)X~,/3o = - X 2 ,  and 8o = (K - 1)Xo, one can write 
F and G in (9) in terms of the generators of SL(2, R) algebra, satisfying 
the commutation relations 

[Xo, X,]  = 2Xb [Xo, X2] = -2X2 ,  [Xl,  X2] = Xo (12) 

Using the 2 x 2 matrix representation of these generators, we can construct 
an SL(2, R)-valued connection 1-form 

where 

(~1 

O o = ( K - 1 ) u x d t  

•1 = (1 - K ) e A ( d x - 2 u  dt) (14) 

02 = - u e  -~ dx + e-X(2u2 +u~,x) dt 

This connection defines a linear equation d ~  = - F ~ ,  where �9 is a column 
vector with components ~1 and 'F2. This associated linear equation does 
not contain any spectral parameter. To introduce such a parameter,  we can 
perform an SL(2, R)  gauge transformation 

F' = ~;F~ -1 + E d2g -1 (15) 

where det E =- 1. As a simple example, we choose 

z = ( e o  ~ e _Oi~x) (16) 
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In the case the linear eigenvalue equations and the associated time evolution 
equations can be reduced to the following scattering problem: 

"t'xx = ( 2i~ + ;,x )'I'. + [ ~2 - i~Ax + ( K - 1)u]~/ 
(17) 

�9 , = [2u/~+ (1 - K ) u x ] ~ - 2 u V x  

Assuming that one particular solution of the prolonged ideal {ai, wk} 
is known, another solution of equations (1) can be written as 

( t = ( t ( u , p , q , y  i) 

~. = ~(A, y ')  
(18) 

p = p ( u , p , q , y  ~) 
q = q(u, p, q, yi)  

Substituting these into the set of forms 

al = dlJ ^ d t . ~ d x  ^ dt 

~2 = d~ ^ dt - ~ dx ^ dt 
' ( 1 9 )  

~3 = dfi ^ dt + 6~fi dx ^ d t -  ~ dYt ^ d t -  dff A dx 

~4 = - d A  A dx + 2ff d~  ^ dt + 2Kfi dx ^ dt 

and requiring these be in the ring of the prolonged ideal, we have the 
following set of differential equations: 

a,q =/~,q = ~7,p = o 

pff,,, - t~,yi F i  - p = 0 

p,~,= + q G - G , F -  q = 0 

pG, + qG, - 6 Up4q + 6 a~ - G '  F ' +  0~.,y' F '  - ,.7,y, G'  = 0 
(20) 

q q '  q - -  4~t'A = 0 

G-a,u = o  

L ~ ( a - u )  = 0  

2K (/~ - P~,x) - ~,y' G'  - 2aA,y, F '  = 0 

The solutions of these equations are trivial, i.e., 

a = u ,  7t=A, ~ = q ,  f i = p  (21) 

which means that there exists no B~icklund transformation other than the 
identity map. This supports the claim that for nonlinear partial differential 
equations admitting only finite-dimensional prolongation algebra Bficklund 
transformations other than the identity mapping seem to be absent (Leo et 
al., 1983). 
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There is a close connection between solvable nonlinear evolution 
equations and nonlinear ordinary differential equations of  Painlev6 type. 
An ODE is said to possess the Painlev6 property when all movable sin- 
gularities are simple poles. Ablowitz et  al. (1980) conjecture that a nonlinear 
ordinary differential equation obtained by an exact reduction of a nonlinear 
partial differential equation of inverse scattering transform class is either 
P-type or it must be related by a simple transformation to an ordinary 
differential equation that is P-type. 

Introducing new variables 

v = x 2 u ,  z = x 3 / t  (22) 

we can write equations (1) in the form of a single nonlinear ordinary 
differential equation, 

[27z3v'" + z v ' ( 1 8 v  + 24 - z) - 12v(v + 2)](6v - z) 

- 6K (2v - 3 v ' z ) ( 6 v  - 6 v ' z  + 9 z 2 v  ") = 0 (23) 

where prime denotes derivative with respect to z. Using the algorithm for 
nonlinear ordinary differential equations introduced by Ablowitz et  al. 

(1980), we obtain the following results: 
Substituting 

v ~ ( z  - Zo)-~Vo,  Zo is arbitrary (24) 

into equation (23), we find 

e~ = - 2 ,  Vo = - 9 z ~ (  K + 2) (25) 

The resonances occur at rl = -1 ,  r2 = 6, r3 = 2(K +2).  
It is obvious that for different values of  K we have different resonance 

values. For K # 0, substituting 

6 

v = ( z  - zo) 2 y~ v j ( z  - Zo) ~ (26) 
j = 0  

into the full equation (23) and requiring that the coefficients of ( z -Zo)  j 
must vanish identically, we find that vj corresponding to the resonance 
values are not arbitrary. This means that at the resonances there must be 
logarithmic branch points. Therefore, equation (23) is not of P-type for 
K ~ O .  

A different exact reduction of equations (1) to an ODE may be obtained 
by looking for a self-similar solution 

v(~) x 
u (302/3 ' z = ( 3 t ) i / 3  (27) 
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where v(z) satisfies 

v " ( 2 v - z ) + 2 K v ' v " + v ' ( 1 2 v 2 - 8 v z + z 2 ) + 2 v z - 4 v 2 = O  (28) 

This can be integrated once: 

v " ( 2 / ) - z ) + ( K - 1 ) ( v ' ) 2 + / ) ' + 4 v 3 - 4 v 2 z + z 2 v + C  =O (29) 

where C is an arbitrary integration constant. 
This ODE is not of P-type, because the Painlev6 expansion does not 

contain the correct number of arbitrary constants. 
Another exact reduction of equations (1) to a different ODE may be 

obtained by looking for a traveling wave solution 

u = / ) ( z ) ,  z = x -  c t  (30) 

where v(z) satisfies 

2Kv' 
v ' + 6 v v ' - c v ' +  v"=0  (31) 

2 v - c  

which can also be integrated once, 

v"(2v - c) + ( g  - 1 ) ( / ) ' ) 2 +  4/) 3 - 4c/)2 + c2/) - C ' =  0 (32) 

where C'  is an arbitrary integration constant. Again this ODE does not 
have the correct number of arbitrary constant; hence, it is not of P-type for 
K r 0. This ODE admits solutions of the form of the elliptic functions, but 
the total number of arbitrary constants is reduced to two, instead of the 
three needed. The ODEs (23), (28), and (31) obtained by exact reductions 
of Giirses-Nutku equations, which are IST class, are not of P-type in their 
present form. 

A different and more recent Painlev~ test due to Weiss et al. (1983) is 
given as follows: A partial differential equation has the Painlev6 property 
when its solutions are "single-valued" about the movable singularity mani- 
fold. If the singularity manifold is determined by 

qb(x ~ x l , . . . , x " ) = 0  (33) 

and ua(a = 1 , . . . ,  N )  satisfy a system of partial differential equations (N- 
equations), then the Painlev6 expansion is given by 

~ a o . . ,xn)Cb k (34) u a  = ( ~ a  U ( k ) ( X  , x l ,  " 
k=O 

where U(~k) are analytic functions of (x ~ x l , . . . : ,  x") in a neighborhood of 
the manifold (33). The substitution of (34) into the partial differential 
equations under consideration determines the possible values of c~a and 
gives the recursion relations for U(~k). 



Giirses-Nutku Equations 1091 

A set of  partial differential equations is said to have the Painlev6 
property in the sense of Weiss et al. provided the aa are integers, the 
recursion relations are consistent, and the series expansion (34) contains 
the correct number  of arbitrary functions. So there are basically three steps 
to the algorithm. Applying these steps to equations (1), we obtain the 
following: 

1. Leading order analysis: 

u - ~%u0, A - cb%Ao, 

al  = -2 ,  ~2 = 2 K  (35) 

Uo = - ( 2 +  K)qb~, /~0 m- ~Tj) - 2 K  

Here K must take negative values in order for Ao to be analytic on �9 = 0. 

2. Resonances: Substituting 

u = qb-2Uo+/31~ r-2, /~ = ( I ) 2 K / ~ 0 +  ~32(I ) r + 2 K  (36) 

into the leading terms of the original equation and requiring that/31 and 
/32 remain arbitrary, we have 

( 2 + K ) ( r + 2 K ) [ ( r - 2 ) ( r - 3 ) ( r - 4 ) - 1 2 ( r - 2 ) + 1 2 ( 2 + K ) ] = 0  (37) 

The roots of this equation determine the resonances. We must always have 
the root rl = - 1 ,  since it represents the arbitrariness of the singular manifold 
qb = 0. The other roots sho,Jld be integers, rl = - 1  is a root of the equation 
(37) when K = 0. For this case the other roots are found to be r 2 = 0 ,  r 3 = 4 ,  

r4 = 6. We know that the case K = 0 is related to the KdV equation, which 
is in fact P-type. When K = 1/2, rl = - 1  is again a root of equation (37), 
but this time Ao is not analytic on qb = 0. Therefore equations (1) are not 
of P-type when K # 0. 

In conclusion, we have showed that the coupled differential equations 
(1) have no nontrivial B~icklund transformation. Even though the coupled 
partial differential equations (1) have a nontrivial prolongation structure 
and ~'",,ave ~ Lax pair, we have showed that they_ do not .Pass the Painlev6 
tests of Ablowitz et aL and Weiss et al. In that respect we should reexamine 
the Painlev4 tests for coupled partial differential equations. Presumably we 
must expand each field, u and A for our case, about distinct singular 
manifolds. 

The research reported in this paper  is supported in part by the Scientific 
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